
The blood–brain barrier (BBB) is a complex cellular sys-
tem that separates the central nervous system (CNS) from the
bloodstream whose purpose is to maintain the homeostasis of
the CNS and protection of the brain from xenobiotics. As a
result, the efficacy of CNS-targeted drugs, is limited by 
insufficient delivering into brain, while for systemically tar-
geted drugs, low BBB penetration is needed for decreasing
CNS adverse effects. Accordingly, prediction of drug perme-
ation across BBB is an important issue in drug discovery 
investigations.1,2)

A method for representation of the BBB permeability 
degree is the logarithm of drug concentration in brain to
blood (log BB) or distribution between brain and blood. How-
ever, log BB is affected by other properties such as plasma
protein binding and brain distribution volume. Howerer
log BB is often used for representing of BBB permeability in
the literature. Similar to other experimental biological activi-
ties or properties, in vivo measurement of BBB penetration is
difficult and time–consuming; therefore computational mod-
els to predict log BB have been developed in recent years.
Lipophilicity, hydrogen bonding capacity, molecular charge,
molecular size, molecular shape, and molecular flexibility
have been proposed as effective parameters for determining
log BB.1)

Recent advances in log BB modeling were reviewed.2.3)

According to these studies, one of the more accurate models
was proposed by Abraham et al., which correlated log BB
to the Abraham solvation parameters of drugs including 
excess molar refraction, solute polarity/polarizability, solute
hydrogen bond acidity and basicity, and McGowan which
characteristic molar volume.4,5) Feher et al.6) proposed quan-
titative structure–property relationship (QSPR) models based
on calculated octanol–water partition coefficient, the number
of hydrogen-bond acceptors in aqueous medium, and the
polar surface area. Subramanian and Kitchen7) employed a
linear regression and a multivariate genetic partial least
squares (G/PLS) approach to predict log BB. They employed
seven descriptors available in the Cerius package. Another
QSPR model using multivariate partial least square (PLS)
using 25 calculated descriptors was proposed by Luco.8) Re-
cently, Fu et al.9) proposed a QSPR model using molecular
weight and number of polar atoms and another QSPR model
using molar volume and partial surface area.10) Wichmann 
et al.11) applied a set of 5 COSMO-RS s-moments obtained
from quantum chemical calculations as descriptors. Artificial
neural networks (ANNs) were also applied for predicting
log BB2) by Chen et al.12) Futhure details of reviewed in silico
models are summarized in Table 1.
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Table 1. In Silico Models for the log BB Prediction

Method Reference Details of model Eq. No.

a 9 log BB�9.880�10�6 MW�7.339�10�3 MW�0.2268npol�0.1143 1
b 6 log BB�0.4275�0.3873nacc, solv�0.192 log P�0.0017Apol 2
c 8 Molecular structure descriptors using PLS method
d 10 log BB��13.31V2�9.601V�2.231PSA�0.5290 3
e 4 log BB�0.044�0.511E�0.8865�0.724A�0.666B�0.861V 4
f 12 ANN 8-5-1 model using eight physicochemical properties
g 7 log BB��0.0204�0.122S_sssN�0.114Rotlbonds�0.0359Jurs_WNSA_3

�0.0615S_dsN�0.1313A log P�0.0959S_SSSCH�0.108Rog 5
h 11 log BB�0.1878�0.0046M0�0.0173M2�0.0027M3 6

a: MW: molecular weight and npol: number of polar atom. b: log P: calculated octanol–water partition coefficient, polar surface area (Apol), number of hydrogen-bond acceptors
in an aqueous medium. d: V: molecular volume, PSA: polar surface area. e: E: excess molar refraction, S: solute polarity/polarizability, A and B: solute hydrogen bond acidity and
V: basicity and McGowan characteristic molar volume. g: S_sssN: N connected by three single bonds, Rotlbonds: number of rotatable bonds, Jurs: surface weighted charged partial
surface area, S-dsN: N connected by a double and single bond, A log P: Ghose and Crippen log P, S_SSSCH: CH connected by three single bonds and Rog: radius of gyration. h: M0,
M2 and M3: the COSMO-RS s-moments were obtained from quantum chemical calculations.



Classification is a common method in chemical disciplines
that was used for BBB modeling along with chemometrics
methods.2) Molecular charge and ionization state are critical
parameters in determination of pharmacokinetic properties
such as log BB. Some drugs are in their ionized form in pH
7.4, while others are in neutral forms. Classification accord-
ing to ionization provides a useful method in pharmacoki-
netic data modeling. As an example Ghafourian et al.13) de-
veloped a QSPR model for the prediction of apparent volume
of distribution in which drugs were classified in two classes
of acidic and basic groups.

Although attempts were made to predict BBB transport
with several physicochemical parameters, in particular with
the octanol–water partition coefficient (log P),2) however, in
some cases poor correlation was found between log BB and
log P.8) A possible reason for such a poor correlation might
be related to the ionization state of drugs that affect log P and
consequently log BB, e.g. log P of aspirin is 1.22 where
log D7.4 is �2.47.14) log D7.4 is the overall ratio of drug, in
ionized and non-ionized forms, between octanol and buffer
in pH�7.4.15)

The aims of this study are classification of compounds 
according to their ionization states in blood pH and propos-
ing two simple QSPR models using multiple linear regres-
sion (MLR) analysis. Descriptors are calculated by Pharma-
Algorithms software, selected by stepwise regression; the 
validity and accuracy of the proposed models are investi-
gated and compared with previous models.

COMPUTATIONAL METHODS

Log BB values of 122 drugs and chemical compounds
were collected from the literature.4,12,16,17) The dataset was
classified according to their ionization state in blood pH
using the logarithm of the distribution coefficient in octanol/
water (log D) at pH 1.7 (log D1.7) and pH 7.4 (log D7.4). Thus
a compound was allocated to the ionized group at pH�7.4 if
log D1.7�log D7.4 and was classified as the un-ionized group
at pH 7.4 if log D1.7�log D7.4. Each group was divided to
train and test sets. To do this, log BB values were sorted
based on the ascending order, and from every five com-
pounds one was assigned as test set (12 compounds in each
group) and the remainder considered as train set (49 com-
pounds in each group). Calculated Abraham solvation 
parameters, molecular weight (MW), topological polar sur-
face area (TPSA), log D7.4, number of hydrogen bond donor
(NHBD), number of hydrogen bond acceptor (NHBA), and
calculated log P (c log P) value using Pharma-Algorithms
software were used as descriptors. A stepwise regression
analysis was employed to select the most significant predic-
tors. The selected descriptors for each dataset (ionized and
un-ionized) were correlated with log BB values using MLR
method. To validate the proposed models and to assess their
prediction capability, the leave-one out (LOO) method was
used in which one compound is left out from the training set
and the trained model was used to predict the removed data
point. The LOO results (q2 values) are inadequate to assess
the validity of a model, so the external validation method
was used to establish a reliable QSPR model considering the
following criteria taken from the literature18—20):

Criterion 1: R2�0.6 and q2�0.5 where R2 is the correla-

tion coefficient between the predicted and experimental 
values of compounds and q2 is defined as following:

(7)

yi and yi	 are experimental and predicted values, respectively,
n is number of compounds in the validation set, and y�Train set

indicates the means of the training and validation sets.
Criterion 2: (R2�R0

2)/R2 or (R2�R0	
2)/R2�0.1 where R2

from a test set should be close to R0
2 or R0	

2 (R0
2 is predicted

versus experimental values and R0	
2 experimental versus pre-

dicted values that are a quantity characterizing linear regres-
sion with Y-intercept set to zero).

Criterion 3: k or k	 slope of regression line (predicted ver-
sus observed regression lines and observed versus predicted
regression lines) through origin should be between 0.85 and
1.15.

In addition to the above validation process an external test
set containing 25 drugs, which was proposed in the literature
to compare the prediction power of the proposed model with
previous models, was employed.

The accuracy of the predicted log BB values is calculated
by average absolute error (AAE) and root mean square error
(RMSE) criteria, which are defined as:

(8)

(9)

RESULTS AND DISCUSSION

Experimental and predicted log BB values for the training
and test sets along with the numerical values of the selected
descriptors are listed in Table 2. The developed QSPR model
for un-ionizable compounds in blood pH is:

(10)

and for ionizable compounds is:

(11)

where N is the number of compounds, R2 the regression coef-
ficient, q2

LOO the cross validation coefficient, s the standard
deviation, and F the Fisher F-statistic.

For un-ionizable compounds in blood, log D7.4 and MW
are the significant parameters for determining log BB. log P
has been reported in the literature as a critical parameter in
log BB prediction.1,3) However, it provides no information
about the ionization state of drugs, so log D7.4 (log P in pH
7.4) can be replaced as a more efficient parameter in log BB
modeling. Higher log D7.4 values are favorable for log BB
whereas lower MW increases log BB and represents a com-
bined effect of molecular size and lipophilicity on log BB.9)

For ionizable compounds that are not ionized in blood pH,
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Table 2. Experimental and Calculated log BB Values of Drugs and Drug-Like Compounds and Absolute Errors for Training and Test Sets and Selected 
Descriptors

No. Drug log D1.7 log D7.4 Groupb) MWc) NHBAd) log BBobserved log BBcalulated AEe)

Train seta)

1 1,1,1-Trifluloro-2-chloroethane 1.87 1.87 1 118.49 0 0.080 0.278 0.198
2 1,2,3,4-Tetrahydroquinoline �1.43 �1.18 2 135.21 1 0.650 0.590 0.060
3 1-Hydroxymidazolam �4.45 �1.05 2 349.83 4 �0.070 �0.269 0.199
4 2,2-Dimethylbutane 3.04 3.04 1 86.17 0 1.040 0.588 0.452
5 2-Methylpentane 3.05 3.05 1 86.17 0 0.970 0.590 0.380
6 2-Methylpropanol-1-ol 0.67 0.67 1 74.12 1 �0.170 0.167 0.337
7 2-Propanol 0.19 0.19 1 60.09 1 �0.160 0.113 0.273
8 3-Methylhexane 3.54 3.54 1 100.2 0 0.900 0.646 0.254
9 4-Hydroxymidazolam �1.63 2.79 2 341.77 4 �0.300 0.262 0.562

10 Acetylsalicylic acid 1.21 �2.47 1 180.16 4 �0.500 �0.718 0.218
11 Albuterol �2.87 �0.99 2 239.31 4 �1.030 �0.260 0.770
12 Alprazolam 2.36 3.49 2 308.76 4 0.040 0.359 0.319
13 Aminopyrine �2.08 1.11 2 231.29 4 0.000 0.030 0.030
14 Amitriptyline 2.3 3.7 2 277.40 1 0.980 1.265 0.285
15 Amobarbital 1.88 1.76 1 226.27 5 0.040 �0.033 0.073
16 Amphetamine �1.44 �0.58 2 135.21 1 0.930 0.673 0.257
17 Antipyrine 0.4 0.54 2 188.23 3 �0.097 0.243 0.340
18 Atropine �1.77 �0.91 2 289.37 4 �0.060 �0.249 0.189
19 Benzene 2.21 2.21 1 78.11 0 0.370 0.451 0.081
20 Bishydroxy L-663581 metabolite �2.92 0.17 2 407.85 9 �1.820 �1.561 0.259
21 Bromocriptine 3.88 6.97 2 658.62 10 �1.100 �0.913 0.187
22 Buspirone �3.46 1.77 2 385.50 7 0.480 �0.755 1.235
23 Butanone 0.61 0.61 1 72.11 1 �0.080 0.161 0.241
24 Carbamazepine 2.58 2.58 1 236.27 3 0.000 0.097 0.097
25 Carbamazepine-epoxide 0.99 0.99 1 252.27 4 �0.340 �0.250 0.090
26 Cefotetan 0.50 �4.08 1 577.64 15 �1.890 �2.092 0.202
27 Chlorambucil 1.50 0.26 1 304.21 3 �1.700 �0.529 1.172
28 Chloroform 1.74 1.74 1 119.38 0 0.290 0.250 0.040
29 Cimetidine �2.8 0.20 2 252.34 6 �1.420 �0.680 0.740
30 Clobazam 3.27 0.88 1 300.74 4 0.350 �0.401 0.751
31 Clonidine �1.53 0.95 2 230.09 3 0.110 0.300 0.190
32 Codeine �1.85 0.47 2 299.36 4 0.550 �0.058 0.608
33 Cyclohexane 2.79 2.79 1 84.160 0 0.920 0.546 0.374
34 Cyclopropane 1.62 1.62 1 42.08 0 0.000 0.435 0.435
35 Desflurane 1.72 1.72 1 168.04 1 0.110 0.116 0.006
36 Desmethylclobazam 3.61 1.22 1 286.71 4 0.360 �0.298 0.658
37 Desmethyldesipramine 0.56 1.68 2 252.35 2 1.060 0.693 0.367
38 Desmethyldiazepam �1.36 1.20 2 274.74 3 0.500 0.335 0.165
39 Diazepam 1.34 2.84 2 284.74 3 0.520 0.562 0.042
40 Dichloromethane 1.35 1.35 1 84.93 0 �0.110 0.268 0.378
41 Divinyl ether 0.81 0.81 1 70.09 1 0.110 0.205 0.095
42 Domperidone 1.17 3.49 2 425.91 7 �0.780 �0.517 0.263
43 Enflurane 2.33 2.33 1 184.49 1 0.240 0.188 0.052
44 Etoposide 0.44 0.44 1 588.56 13 �2.000 �1.257 0.743
45 Flunitrazepam 1.59 2.06 2 313.28 6 0.060 �0.423 0.483
46 Fluphenazine �0.34 4.09 2 437.52 4 1.510 0.442 1.068
47 Fluroxene 1.45 1.45 1 126.08 1 0.130 0.177 0.047
48 Gentisic acid 1.22 �0.37 1 154.12 4 0.100 �0.246 0.346
49 Haloperidol 0.21 2.18 2 375.86 3 1.340 0.470 0.870
50 Hexane 3.28 3.28 1 86.17 0 0.800 0.634 0.166
51 Icotidine �1.06 2.23 2 379.45 7 �2.000 �0.692 1.308
52 Imipramine 1.48 2.61 2 280.41 2 1.060 0.822 0.238
53 Indinavir 0.01 4.69 2 619.84 9 �0.750 �0.936 0.186
54 Isoflurane 2.26 2.26 1 184.49 1 0.420 0.175 0.245
55 Levodopa �2.8 �2.48 2 197.19 5 �0.770 �0.759 0.011
56 Lupitidine �4.54 0.27 2 413.54 7 �1.060 �0.963 0.097
57 Mesoridazine 1.56 2.69 2 386.57 3 �0.360 0.541 0.901
58 Methamphetamine �0.46 0.00 2 151.25 1 0.990 0.753 0.237
59 Methane 0.45 0.45 1 16.04 0 0.040 0.281 0.241
60 Methohexital 2.73 2.65 1 262.30 5 �0.060 0.041 0.101
61 Methoxyflurane 2.21 2.21 1 164.97 1 0.250 0.218 0.032
62 Methylcyclopentane 2.79 2.79 1 84.16 0 0.930 0.546 0.384
63 Mirtazapine �2.34 2.31 2 265.35 3 0.530 0.488 0.042
64 Morphine �2.32 0.00 2 285.34 4 �0.160 �0.123 0.037
65 m-Xylene 3.03 3.03 1 106.16 0 0.300 0.532 0.232
66 Nor-1-chlorpromazine 1.83 2.30 2 304.84 2 1.370 0.779 0.591
67 Nor-2-chlorpromazine 1.29 2.42 2 290.81 2 0.970 0.796 0.174



NHBA is the most effective parameter in which drugs with
more hydrogen bond acceptor sites have lower permeation to
brain. The impact of hydrogen bonding on log BB has been
recognized and some models for prediction of log BB have
been reported in the literature.1)

Table 3 shows the correlations between selected parame-
ters and calculated log BB values and their intercorrelation.
The selected descriptors were not significantly correlated
with each other. For un-ionizable compounds, both log D7.4

and MW are important, whereas for ionizable compounds
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Table 2. Continued

No. Drug log D1.7 log D7.4 Groupb) MWc) NHBAd) log BBobserved log BBcalulated AEe)

68 o-Xylene 3.03 3.03 1 106.16 0 0.366 0.532 0.166
69 Paraxanthine �2.48 �2.01 2 182.18 6 0.060 �0.986 1.046
70 Pentane 2.80 2.80 1 72.15 0 0.760 0.580 0.180
71 Pentobarbital 1.88 1.76 1 226.27 5 0.100 �0.033 0.133
72 Pergolide �2.09 0.71 2 316.5 2 0.300 0.559 0.259
73 Phencyclidine 1.79 3.20 2 245.4 1 0.680 1.196 0.516
74 Phenylbutazone 3.20 0.15 1 308.37 4 �0.520 �0.561 0.041
75 Phenytoin 1.96 1.9 1 252.27 4 �0.040 �0.076 0.036
76 Propanone 0.12 0.12 1 58.08 1 �0.150 0.105 0.255
77 Propranolol �0.06 0.89 2 259.34 3 0.640 0.292 0.348
78 p-Xylene 3.03 3.03 1 106.16 0 0.310 0.532 0.222
79 Quinidine �2.71 1.06 2 324.42 4 �0.460 0.023 0.483
80 Ranitidine �5.8 �1.00 2 314.4 7 �1.230 �1.138 0.092
81 Risperidone �3.03 1.09 2 410.48 6 �0.020 �0.557 0.537
82 Salicylic acid 2.02 �1.89 1 138.12 3 �1.100 �0.494 0.606
83 Salicyluric acid �0.7 �4.83 1 197.19 5 �0.440 �1.215 0.775
84 SKF101468 �0.01 1.40 2 260.37 3 0.250 0.362 0.112
85 SKF89124 0.15 1.56 2 276.37 4 �0.430 0.092 0.522
86 Sulforidazine �2.44 �0.54 2 404.59 4 0.180 �0.198 0.378
87 Tacrine �0.22 0.48 2 198.26 2 �0.130 0.527 0.657
88 Teflurane 1.72 1.72 1 180.93 0 0.270 0.081 0.189
89 Temelastine �7.59 �3.41 2 446.38 6 �1.880 �1.179 0.701
90 Theobromine �0.80 �0.80 1 180.16 6 �0.280 �0.399 0.119
91 Thiopental 2.81 2.55 1 242.34 4 �0.140 0.075 0.215
92 Thioperamide �0.48 2.26 2 292.44 4 �0.161 0.189 0.350
93 Tibolone 3.37 3.37 1 312.44 2 0.400 0.044 0.356
94 Tiotidine �4.54 0.12 2 312.42 8 �0.820 �1.276 0.456
95 Toluene 2.62 2.62 1 92.140 0 0.370 0.492 0.122
96 Triazolam 0.20 4.06 2 343.21 4 0.740 0.438 0.302
97 Trichloroethene 2.76 2.76 1 131.39 0 0.340 0.413 0.073
98 Valproic acid 2.29 �0.2 1 144.21 2 �0.220 �0.187 0.033

AAEf) 0.337
Test seta)

1 1,1,1-Trichloroethane 2.20 2.20 1 133.4 0 0.4 0.258 0.142
2 3-Methylpentane 3.05 3.05 1 86.17 0 1.01 0.562 0.448
3 9-OH rispridone �3.92 0.20 2 426.48 1 �0.67 �0.971 0.301
4 Atenolol �2.84 �1.89 2 266.34 4 �0.87 �0.676 0.194
5 Bretazenil 3.88 4.18 2 418.28 0 �0.09 �0.130 0.040
6 Bromperidol 1.14 2.55 2 410.32 1 1.38 0.521 0.859
7 Desmonomethylpromazine 1.10 1.57 2 270.39 1 0.59 0.678 0.088
8 Diethyl ether 1.11 1.11 1 74.120 0 0.00 0.228 0.228
9 Ethanol �0.07 �0.07 1 46.07 1 �0.16 0.086 0.246

10 Ethylbenzene 3.10 3.10 1 106.160 0 0.20 0.512 0.312
11 Flumanezil 2.11 2.41 2 303.29 0 �0.29 �0.374 0.084
12 Halothane 2.18 2.18 1 197.38 0 0.35 0.062 0.288
13 Heptane 3.77 3.77 1 100.200 0 0.81 0.657 0.153
14 Hexobarbital 1.98 1.9 1 236.27 1 0.1 �0.108 0.208
15 Levorphanol 0.94 2.35 2 259.390 1 0.00 0.785 0.785
16 Mepyramine �1.95 1.63 2 285.3 0 0.49 0.102 0.388
17 Methotrexate �5.2 �5.48 1 454.44 7 �1.52 �2.172 0.652
18 Mianserin �1.54 3.14 2 264.360 0 0.99 0.894 0.096
19 Northioridazine 2.29 2.41 2 356.45 1 0.75 0.794 0.044
20 Paracetamol 0.23 0.23 1 151.16 2 �0.31 �0.172 0.138
21 Primidone 1.00 1.00 1 218.25 2 �0.07 �0.226 0.156
22 R-hydroxyalprazolam �1.91 0.09 2 330.81 2 �1.27 �0.403 0.867
23 Trichloromethane 1.74 1.74 1 119.38 0 0.29 0.212 0.078
24 Zolantidine 0.72 4.49 2 381.53 1 0.14 0.497 0.357

AAE f) 0.298

a) The data were sorted based on f log BB values and from every five compounds one was assigned as test set and the remained were determined as train set. b) A com-
pound was allocated to the un-ionized group (group 1) if log D1.7�log D7.4 and to the ionized group (group 2) if the log D1.7�log D7.4. c) Molecular weight. d) Number of hy-
drogen bond acceptor. e) AE is absolute error and is calculated using AE�|log BBexperimental�log BBcalculated|. f ) AAE is absolute average error and is computed by:
AAE�(ÍN AE)/N.



hydrogen bond is very important and log D7.4 has partial ef-
fect.

The overall AAE value for train sets was 0.337
0.291
(0.264
0.237 and 0.410
0.322 for ionizable and un-ioniz-
able compounds, respectively). The corresponding value for
test sets was 0.298
0.252 (0.254
0.160 and 0.342
0.321
for ionizable and un-ionizable compounds, respectively). Fig-
ure 1 shows the relative frequencies of absolute error for

each compound sorted into three subgroups, such as �0.3,
0.3—0.8, and �0.8. The acceptable AE for log BB prediction
is 0.3 log unit.3) Figure 1 shows that �60% of data were pre-
dicted by AE values �0.3 log unit. Overall RMSE values of
train set was 0.444 (0.353 and 0.519 for un-ionizable and
ionizable compounds, respectively) and for test set 0.387
(0.296 and 0.460 for un-ionizable and ionizable compounds,
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Fig. 1. Relative Frequency (%) of Absolute Errors (AE�|log BBobserved�
log BBcalculated|) for Train and Test Sets

Fig. 2. AAE and RMSE of the Studied Models

a to h: predicted values using previous methods of Table 1, i: predicted using Eqs. 10
and 11, this study.

Table 3. Intercorrelation (R2) between Selected Parameters and Correla-
tion with log BB for Train Set

log BB log BB
log D7.4 MW NHBA

(Eq. 10) (Eq. 11)

log BB (Eq. 10) 1.00 — 0.49 0.44 —
log BB (Eq. 11) — 1.00 0.06 — 0.54
log D7.4 0.49 0.06 1.00 0.11
MW 0.44 — 0.11 1.00 0.00
NHBA — 0.54 0.00 — 1.00

Table 4. Statistical Parameters of Test Set

Statistical parameter Group 1 (Eq. 1) Group 2 (Eq. 2)

R2�0.6 0.848 0.633
q2

ext�0.5 0.764 0.636
(R2�R0

2)/R2 or 0.031{(R2�R0
2)/R2} 0.027{(R2�R	0

2)/R2}
(R2�R	0

2)/R2�0.1
0.85�k or k	�1.15 1.045 (k) 0.965 (k	)

Table 5. Details of External Test Set, log D1.7, log D7.4, Class of Compounds, Significant Descriptors and Experimental (Observed) and Calculated log BB
Values Using Various Models

No. Drug log D1.7 log D7.4 Class MW NHBA log BBobserved

log BBcalulated

a b c d e f g h i

1 Alprazolam 2.36 3.49 2 308.8 4 0.04 0.30 �0.58 0.33 0.16 0.98 0.25 0.40 �0.33 0.38
2 Antipyrine 0.40 0.54 2 188.2 6 �0.10 0.24 �0.03 0.47 0.39 �0.36 0.09 0.29 �0.02 �0.62
3 BCNU 1.53 1.53 1 214.1 5 �0.52 �0.36 �0.56 �0.57 0.54 �0.79 �0.83 �0.88 �0.53 0.08
4 Caffeine �0.45 �0.45 1 194.2 6 �0.06 �0.42 �1.03 �0.22 �0.40 �0.56 �0.76 0.14 �0.56 �0.33
5 Chlorpromazine 2.22 3.34 2 318.9 2 1.06 0.77 0.86 0.71 1.01 0.99 1.12 0.74 0.76 0.94
6 Codeine �1.85 0.47 2 299.4 4 0.55 0.06 �0.75 0.27 0.12 0.13 0.36 �0.01 �0.15 �0.05
7 Desipramine 1.09 1.57 2 318.9 2 1.20 0.77 0.77 0.43 0.99 0.82 1.11 0.94 0.50 0.69
8 Didanosine �1.19 �1.08 2 236.2 7 �1.30 �0.97 �1.95 �0.82 �1.19 �1.07 �0.41 �1.12 �1.57 �1.15
9 Hydroxyzine �2.42 1.94 2 374.9 4 0.39 0.11 �0.20 0.13 0.10 0.50 0.11 �0.44 0.11 0.16
10 Ibuprofen 3.44 0.38 1 206.3 2 �0.18 0.30 �0.09 �0.56 0.20 0.33 0.05 0.11 0.15 �0.17
11 Indomethacin 3.49 0.71 1 357.8 5 �1.26 �0.11 �1.07 �1.03 0.52 0.02 �1.23 �1.63 �0.31 �0.40
12 Midazolam �0.17 4.25 2 327.8 3 0.36 0.55 �0.02 0.40 0.49 1.13 0.65 �0.14 0.05 0.78
13 Nevirapine 1.46 3.66 2 266.3 5 0.00 �0.22 �0.95 �0.29 �0.11 �0.32 0.01 �0.08 �0.19 0.12
14 Oxazepam 2.11 2.32 2 286.7 4 0.61 �0.18 �0.70 �0.48 0.39 0.18 �0.99 �0.74 �0.79 0.21
15 Pentobarbital 1.88 1.76 1 226.3 4 0.12 �0.55 �0.77 �0.19 �0.81 �0.31 �0.52 �0.55 �0.55 0.10
16 Phenserine �2.33 1.95 2 337.4 5 1.00 �0.12 �0.23 0.23 0.08 0.18 �0.14 1.00 0.19 �0.13
17 Physostigmine �3.60 0.68 2 275.4 5 0.08 �0.20 �0.50 0.01 0.05 �0.02 0.43 0.62 �0.12 �0.31
18 Promazine 1.48 2.61 2 284.4 2 1.23 0.72 0.78 0.83 1.02 0.85 1.07 0.84 0.66 0.84
19 SB-222200 4.36 5.86 2 380.5 3 0.30 0.34 0.19 0.43 0.05 0.75 0.65 0.72 0.17 1.01
20 Terbutylchlorambucil 3.23 4.83 2 360.3 3 1.00 0.57 0.28 �0.23 0.50 1.13 �0.40 �0.94 0.49 0.87
21 Theophylline 0.12 0.10 1 180.2 6 �0.29 �0.70 �1.43 �0.51 �0.86 �1.03 �0.67 0.01 �0.92 �0.18
22 Thioridazine 3.04 4.17 2 370.6 2 0.24 0.79 0.89 1.06 0.92 1.46 1.32 0.71 0.77 1.06
23 Trifluoroperazine 0.17 4.37 2 352.4 3 1.44 0.79 0.70 0.46 0.98 1.11 1.21 0.31 0.86 0.80
24 Verapamil 1.76 3.17 2 454.6 6 �0.70 �0.18 �1.32 �1.11 1.07 0.29 0.18 �0.71 0.10 �0.24
25 Zidovudine �0.80 �0.80 1 267.2 9 �0.72 �1.35 �2.37 �1.02 �1.92 �0.60 ND �1.23 �1.19 �0.55

a to h: predicted using previous methods, i: predicted using Eqs. 10 and 11, this study.



respectively) which shows a similar accuracy pattern with
AAE.

Model Validation Table 4 shows the results of model
validation and statistical parameters of the test set. The pro-
posed QSPR models were validated by LOO cross validation.
The q2 values of Eq. 10 and Eq. 11 are acceptable and did not
differ substantially from the R2 values.

Statistical characteristic of the test set is acceptable 
according to the above-mentioned criteria. R2 and q2 were
�0.6 and �0.5, respectively; (R2�R0

2)/R2 or (R2�R0	
2)/R2 was

�0.1, and k or k	 values varied between 0.85 and 1.15.
Comparison of the Proposed Models with Previous

Models A dataset of 25 data points proposed in the litera-
ture as external dataset was employed to assess the accura-
cies of the proposed models and to compare them with previ-
ous models.8,9) The experimental and predicted values of
log BB are listed in Table 5. Figure 2 shows AAE and RMSE
of the models. As can be seen, the models produced the same
accuracy pattern considering AAE and RMSE criteria. The
results suggest that the proposed models can predict log BB
accurately and a simple classification could improve predic-
tion of log BB.

CONCLUSION

MLR was used to propose simple and accurate log BB pre-
diction model. Classification (according to ionization state)
can be a useful method to improve log BB prediction. log D7.4

and MW or NHBA for un-ionizable and ionizable com-
pounds, respectively, are critical parameters for log BB pre-
diction. Proposed models are very simple and interpretative,
and can be easily used the rapid prediction of log BB in drug
discovery investigations.
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